59 research outputs found

    Proteolytic cleavage of factor VIII heavy chain is required to expose the binding-site for low-density lipoprotein receptor-related protein within the A2 domain

    No full text
    Low-density lipoprotein receptor-related protein (LRP) is an endocytic receptor that contributes to the clearance of coagulation factor (F) VIII from the circulation. Previously, we have demonstrated that region Glu(1811)-Lys(1818) within FVIII light chain constitutes an important binding region for this receptor. We have further found that FVIII light chain and intact FVIII are indistinguishable in their LRP-binding affinities. In apparent contrast to these observations, a second LRP-binding region has been identified within A2 domain region Arg(484)-Phe(509) of FVIII heavy chain. In this study, we addressed the relative contribution of FVIII heavy chain in binding LRP. Surface plasmon resonance analysis unexpectedly showed that FVIII heavy chain poorly associated to the receptor. The binding to LRP was, however, markedly enhanced upon cleavage of the heavy chain by thrombin. The A2 domain, purified from thrombin-activated FVIII, also showed efficient binding to LRP. Competition studies employing a recombinant antibody fragment demonstrated that region Arg(484)-Phe(509) mediates the enhanced LRP binding after thrombin cleavage. We propose that LRP binding of non-activated FVIII is mediated via the FVIII light chain while in activated FVIII both the heavy and light chain contribute to LRP bindin

    Enhanced thrombin sensitivity of a factor VIII-heparin cofactor II hybrid

    No full text
    Generation of thrombin at a site of vascular injury is a key event in the arrest of bleeding. In addition to the conversion of fibrinogen into the insoluble fibrin, thrombin can initiate a number of positive and negative feedback mechanisms that either sustain or down-regulate clot formation. We have modulated the thrombin sensitivity of human blood coagulation factor VIII, an essential cofactor in the intrinsic pathway of blood coagulation. We have substituted an acidic region of factor VIII corresponding to amino acid sequence Asp712-Ala736 by amino acid sequence Ile51-Leu80 of the thrombin inhibitor heparin cofactor II. Functional analysis of the resulting factor VIII-heparin cofactor II hybrid, termed des-(868-1562)-factor VIII-HCII, revealed an increase in procoagulant activity as measured in a one-stage clotting assay. Incubation of purified des-(868-1562)-factor VIII-HCII with different amounts of thrombin showed that this protein was more readily activated by thrombin when compared with des-(868-1562)-factor VIII, a control protein lacking amino acid sequence Ile51-Leu80 of heparin cofactor II. This was manifested by an increase in the second order rate constant of activation by thrombin for des-(868-1562)-factor VIII-HCII (12.0 +/- 0.48 x 10(6) M-1 s-1) compared with des-(868-1562)-factor VIII (1.77 +/- 0.21 x 10(6) M-1 s-1). Our data suggest that amino acid sequence Ile51-Leu80 of heparin cofactor II endows factor VIII with increased sensitivity towards thrombin which results in accelerated clot formatio

    Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing

    No full text
    Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH4 L-1 (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L-1 (P < 0.05; n = 34). Average δ13C-CH4 values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ13C-CH4 data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ2H-CH4 values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and—possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use

    EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF

    No full text
    The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum

    Genome-wide transposon mutagenesis indicates that Mycobacterium marinum customizes its virulence mechanisms for survival and replication in different hosts.

    No full text
    The interaction of environmental bacteria with unicellular eukaryotes is generally considered a major driving force for the evolution of intracellular pathogens, allowing them to survive and replicate in phagocytic cells of vertebrate hosts. To test this hypothesis on a genome-wide level, we determined for the intracellular pathogen Mycobacterium marinum whether it uses conserved strategies to exploit host cells from both protozoan and vertebrate origin. Using transposon-directed insertion site sequencing (TraDIS), we determined differences in genetic requirements for survival and replication in phagocytic cells of organisms from different kingdoms. In line with the general hypothesis, we identified a number of general virulence mechanisms, including the type VII protein secretion system ESX-1, biosynthesis of polyketide lipids, and utilization of sterols. However, we were also able to show that M. marinum contains an even larger set of host-specific virulence determinants, including proteins involved in the modification of surface glycolipids and, surprisingly, the auxiliary proteins of the ESX-1 system. Several of these factors were in fact counterproductive in other hosts. Therefore, M. marinum contains different sets of virulence factors that are tailored for specific hosts. Our data imply that although amoebae could function as a training ground for intracellular pathogens, they do not fully prepare pathogens for crossing species barriers
    • …
    corecore